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Abstract 

This report describes research on active problems in computed tomography (CT) scanning applications. The problems 
are metal artifact reduction in CT images for medical imaging and luggage screening, and methods to evaluate 
segmentation of CT images. The research forms the basis of a PhD dissertation topic at UCSD, and is sponsored by 
LLNL.  

 

I. INTRODUCTION In aviation security, luggage screening is often done by CT-based screening systems, which 

employ automatic target recognition algorithms (ATR). The U.S. Department of Homeland Security has identified 

lowering false alarms and increasing threat categories as a requirement for future systems. This motivates 

improvements in image reconstruction, image segmentation and ATR [1]. The original goal of this research was the 

recognition and characterization of ordinary nonthreat objects in luggage, encompassing image reconstruction, 

segmentation and the evaluation of segmentation. The presence of metal in luggage creates artifacts which are a 

large impediment in segmentation. Therefore, research in metal artifact reduction (MAR) was established as an 

important goal. Most of the MAR literature comes from medical imaging. We made improvements in MAR for the 

medical application. The medical work helped us better understand the metal artifact problem and to develop a 

solution for luggage scanning. We also developed segmentation evaluation methods suited for luggage screening, 

and that give insights into the machine segmentation  

algorithms that were previously unavailable from other evaluation methods. Finally, we reviewed existing literature on 

segmentation algorithms, and implemented promising methods.  

II. METAL ARTIFACT REDUCTION (MAR) IN MEDICAL CT The presence of metal in CT scans causes streaks 

and shadows that obscure surrounding tissue, making it difficult for radiologists to evaluate images. For over 

three decades MAR has been an active area of research. The various approaches fall into three categories, 

sinogram replacement [2]–[10], multiple-energy decomposition [11]–[17] and iterative reconstruction [12], 

[18]–[23]. We have worked on a sinogram replacement method because it is faster than numeric reconstruction, 

and because scanning with two or more energies is not standard scanning practice. In the sinogram 

replacement approach, projection samples in the sinogram (Radon space) corresponding to rays that pass 

through metal are replaced with an estimate of true underlying data. The rays are calculated from an original 

image reconstruction that contains artifacts. In recent years, it was proposed that an intermediate coarse image 

be reconstructed, which could then be reprojected and guide the replacement of the metal-contaminated 

samples [5], [6]. This image is often called a ”prior-image”. The prior image is generated by the voxel-wise 

classification of the original image into tissue types. The classification is done by thresholding. Thresholding 

often results in misclassification of tissue leading to residual artifacts or secondary artifacts. Our advance on this 

approach consists of making a better prior-image by exploiting observations we have made about the 

characteristics of metal  

artifacts; the artifacts are adjacent to metals, artifact intensity drops with distance from the metal, and that local maxima 

in Radon space correspond to local minima in the image space. These observations are based on simulations that we 

performed. We segment the artifacts from anatomy using morphology and clustering, using the properties given above. 

We replace the artifact-labeled areas with soft tissue values. The prior image is reprojected and used with [5] to obtain 

corrected data. The corrected data is reconstructed to give the final MAR image. Since spatial and CT intensity 
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distributions are jointly used, we can get a better segmentation than by using intensity (thresholding) alone.  
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We applied our method to medical scans of heads obtained from Lahey Clinic, Burlington MA. Eight 

images were tested with metal implants including aneurysm coils, a deep brain stimulator and dental 

fillings. Our MAR images showed good artifact reduction. We implemented other methods in the 

literature for comparison [3], [24], and found that our method yielded better artifact reduction than the 

others, and the improvement came solely from the prior. We showed that the prior has more impact on 

the final image than the data replacement technique. Our work opens up an interesting area of research, 

which can be extended for better artifact reduction, robustness to more metal and for application to other 

anatomical areas.  

This work led to peer-reviewed conference and journal publications. Details of our methods and 

results can be found in the journal paper.  

S. Karimi, P. Cosman, C. Wald, and H. Martz, “Segmentation of artifacts and anatomy in CT metal 

artifact reduction,” Medical Physics, vol. 39, pp. 585768, 2012.  

S. Karimi, P. Cosman, C. Wald, and H. Martz, “Using segmentation in CT metal artifact reduction,” In 

IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), 2012 , pp. 9-12. IEEE, 2012.  

III. METAL ARTIFACT REDUCTION IN CT-BASED LUGGAGE SCREENING Similar to the medical 

application, metal artifacts degrade the CT images making it difficult for ATR algorithms to correctly segment 

and recognize objects of interest. The artifacts may lead to apparent splitting of a single object, or the 

merging of separate objects. Since EDS are tuned for high detection rates, the artifact-degraded images lead 

to higher false alarms. Reducing metal artifacts is expected to improve system performance. In luggage 

scanning, the contents of the bags are unknown. Therefore, the sinogram replacement techniques mentioned 

in the previous section cannot be used because they create prior-images through image segmentation, and 

segmentation is based on assumptions about image contents. Therefore, we look to iterative and numerical 

techniques. Model based iterative techniques have the potential to reduce metal artifacts but rely on the 

accuracy of attenuation process, which are difficult to model correctly and are slow. They also often require 

that the scan materials be known [20], [22], [25], [26]. A recent approach to MAR is to use numerical 

optimization for reconstruction without detailed scanner modeling. This approach assumes that the projection 

data are adequately preprocessed to compensate for other image degradations, but are still degraded by 

metal. Numerical optimization has become more reliable and efficient in recent years, but its application to 

MAR is limited [27]–[29]. These methods use different objective functions and constraints in their methods, 

but in all, the sinogram samples containing metal are discarded. As a result, metal artifacts are deleted, but 

there is a loss of edges. Our approach is again to build a prior-image, but without the assumptions from the 

medical application, and to use the prior-image in sinogram replacement. Like the medical application, we 

want our prior image to have sparse gradients and be artfact-free. We do not discard metal projection 

samples, but rather, we deemphasize them by using a weighting function. We perform a constrained 

regularized weighted least squares minimization. We use total variation regularization following earlier 

methods [28], [30]. We choose exponential weights because attenuation is exponential, and the weights are 

smooth and monotonic. We have added a novel constraint, which reduces the possibility of artifacts being 

pushed elsewhere due to the weighting function. Our constraint is that reprojected rays through metal must 

be greater than the rays measured from the scanner. A third innovation was to shrink the optimization 

problem. The artifacts that  

are difficult to correct are large low-frequency artifacts. By taking the difference between our constrained 

optimization solution, and an unweighted least-squares solution we isolated the artifacts. We solved for  
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images that were 
1 

the original size and downsampled the projection data by another factor of 16,  

16 allowing a speed-up of 16
3 

in reconstruction time. The isolated artifacts were 

upsampled and subtracted from the original image to yield the prior-image. The prior-image was 

then used with [5] to correct the data, and the corrected data reconstructed to give the final image. 

We tested our method on eight bag images obtained from a medical scanner (Imatron, CA), 

courtesy the ALERT group at Northeastern University. The bags were packed with various objects 

and different kinds of metallic objects, and contained various levels of clutter. In visual and 

quantiative evaluation, our method provided good artifact reduction. Objects with uniform CT 

attenuation, such as contained liquids were present in each bag. The CT number distributions within 

these objects were used for quantitative evaluation. We also used gradient-based scores, and 

sinogram-based errors defined in the literature for evaluation. A limitation is that edges were lost 

when the streaks were along them, which is common to most MAR methods. We implemented other 

methods that were applicable to non-medical scanning [3], [28] for comparison. Our method yielded 

better results than these benchmarks in that edges were retained better, and fewer secondary 

artifacts resulted. Details are provided in a paper that is submitted to a peer-reviewed journal. We 

have also submitted this research to a conference.  

S. Karimi, H. Martz, and P. Cosman, “Metal Artifact Reduction for CT-based Luggage Screening,” 

submitted to IEEE Transactions on Image Processing  

S. Karimi, H. Martz, and P. Cosman, “Metal Artifact Reduction for CT-based Luggage Screening,” 

submitted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 

2014.  

IV. SEGMENTATION EVALUATION Quantitative evaluation is necessary 

to assess machine segmentation (MS) algorithms meaningfully. For applications such as luggage 

scanning, CT images contain many objects for an ATR to segment and characterize. Therefore, the 

evaluation method should provide useful results with multiple segments, for multiple split and merge 

errors. We have several requirements of the evaluation algorithm. First, the evaluation method 

should provide insight into the behavior of the MS algorithm, so that the latter can be improved, e.g., 

tendency toward over / undersegmentation. Second, the method must evaluate the extent to which 

an MS algorithm captures object features. Third, it should be able to assign priorities to segments 

when evaluating the MS algorithm. Priorities may be based on image features. Various goodness 

measures (such as region similarity and inter-region differences) have been proposed to evaluate a 

segmentation without a ground truth (GT) reference [31]–[33]. However, luggage articles are 

inherently heterogeneous in composition, making goodness measures unsuitable in this application. 

Other methods evaluate segmentation against GT by computing a distance between the sets of edge 

pixels [31], [34], [35], but these methods do not measure feature retrieval. Local and global 

consistency errors from computer vision literature ignore refinements [36], which in our application 

correspond to label split and merge errors. Some other evaluation methods do not measure feature 

recovery [37], measure multiple features from single labels (in background) [38], or measure a total 

feature value from multiple labels [39], [40]. Other researchers have proposed measuring differences 

between histograms [41], [42] which makes sense when the objects of interest are similar and their 

features characterize populations. We propose two new methods of evaluation to meet the 

application needs described above, and address many limitations of existing methods. Both methods 

require GT segmentations. Our images are 3D images containing multiple objects that have complex 

shapes. To create GTs efficiently, we developed a semiautomatic labeling method by combining 

manual contouring, contour interpolation, and region growing. Both our evaluation methods require 
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that we generate a confusion matrix, whose rows consist of GT labels and columns consist of MS 

labels. The confusion matrix cells may contain the number of voxels common to the row-column pair, 

or contain the value of any pointwise feature. The first evaluation method is based on information 

theory. We calculate a weighted mutual information  

(WMI) score of features from their joint distribution in GT and MS. The confusion matrix allows GT and 

MS label images to be expressed as joint and marginal probability densities. The mutual information is 

normalized by the square root of the product of the entropies. The confusion matrix can be weighted 

row-wise to emphasize certain objects or properties before computing the score. We have used the WMI 

score for volume, mass and mass weighted in a way to prioritize uniform objects. The mass and 

uniformity are computed with respect to the CT image.  
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The second evaluation method, which we call Feature Descriptor Recovery (FDR), is based on estab-

lishing best correspondence between MS and GT segments and measuring segment-wise errors. The 

best correspondence was established using the Hungarian algorithm. As in the WMI score, the error can 

be computed for segment volumes, masses or uniformity (weighted by mass), or any other desired 

feature. We can determine whether the errors are predominantly undersegmentation, oversegmentation 

or random, as well as determine outliers and trends.  

A database of CT images of suitcases was generated by the ALERT group at Northeastern University, 

and distributed to five research groups at universities and corporations [43]. The database contained no 

threats; the requirement was to segment all objects present in each suitcase. We obtained the results of 

the algorithms on five suitcases, and used our measures to evaluate the MS algorithms. Both evaluation 

methods have different perspectives, however their results were in agreement. Some additional findings 

were that all the MS algorithms did a better mass retrieval than volume retrieval, and that some 

algorithms may have trends, such as better accuracy for certain feature values. The evaluation methods 

were validated by human expert observer experiments on the bags, and by synthetic problems.  

More details are available in the following journal and conference publications.  

S. Karimi, X. Jiang, P. Cosman, H. Martz, “Flexible Methods for Segmentation Evaluation: Results 

from CT-based Luggage Screening,” Journal of X-ray Science and Technology, accepted Jan 2014.  

S. Karimi, X. Jiang, P. Cosman, H. Martz, “Evaluation of Segmentation Algorithms in CT scanning,” In 

IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB), 

2012 , pp. 139-139. IEEE, 2012.  

V. SEGMENTATION ALGORITHM REVIEW ATR algorithms segment objects of 

interest in luggage images and measure properties of those objects. Improved segmentation will 

lead to lower false alarm rates. In addition, the definition of threats is evolving, so ATRs can be 

improved by better characterization of all objects in bags. We have investigated and implemented 

several segmentation algorithms and weighed benefits and weaknesses for CT-based luggage 

screening. We have reviewed level set methods [44], [45], Markov random fields [46], graph-cut 

(GC) methods [47]–[51], random walks [52], mean shift [53], region growing [54], watershed 

segmentation [55], conditional random fields (CRF) [56] and hierarchical clustering methods 

[56]–[59]. We have implemented region growing, watershed segmentation and graph cut methods. 

We believe GC methods are the most promising for segmentation in luggage. CRF is another 

promising approach because it allows supervision in segmentation. Supervision, such as training 

for compatibility of pixels or superpixels is important for this application because the objects are 

diverse and heterogenous. We have implemented a segmentation algorithm based on GC. We 

used expectation maximization to determine the prior probabilites of the nodes, and the conditional 

probabilities, assuming a Gaussian mixture model (GMM). We tested this EM/GC segmentation 

algorithm on simulated images and a bag slice. The simulated data gave us a good segmentation, 

but the real data case combined some segments that belonged to different objects because they 

had similar characteristics.  

Additional study is needed for better estimation of model order, optimization, building contexts for 

hierarchical segmentation.  
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